

AMOUNT OF SUBSTANCE

THE MOLE

MOLES

1 mole of H_2O molecules has mass 18.0 g (M_r of $H_2O = 18.0$)

1 mole of C atoms has mass 12.0 g $(M_r \text{ of C} = 12.0)$

THIS IS NOT A COINCIDENCE!

Chemists have worked how many particles are in the M_r in grams of any substance – this number is the mole (6.02 x 10²³)

MOLES

$N_2 + 3H_2 \longrightarrow 2NH_3$

1 molecule 3 molecules

12 36 1 dozen 3 dozen 2 molecules

24 2 dozen

12 x 10²³

2 moles

$N_2 + 3H_2 \longrightarrow 2NH_3$

1 mole 3 moles

10 moles 30 moles

2 moles 6 moles

0.5 moles 1.5 moles

4 moles 12 moles

2 moles

20 moles

4 moles

1.0 moles

8 moles

$C_3H_8 + 5O_2 \longrightarrow 3CO_2 + 4H_2O_2$

1 molecule

5 molecules

10 moles 50 moles

2 moles 10 moles

0.5 moles 2.5 moles

0.03 moles 0.15 moles

3 molecules

4 molecules

8 moles

30 moles40 moles

6 moles

1.5 moles

2 moles

0.09 moles 0.12 moles

3 moles START

3 moles

3 moles of N₂ needs 9 moles of H₂ for it all to react

- \therefore there is not enough H₂ so the amount that reacts is limited by moles H₂
- \therefore H₂ is limiting reagent (and N₂ is in excess)
- \therefore so only 1 mole of N₂ can react (and 2 moles of N₂ is left over)

+2 moles CHANGES -1 mole -3 moles **END** 3-1 =3-3 =0+2 =2 moles 0 moles 2 moles

START12 moles24 moles12 moles of N2 needs 36 moles of H2 for it all to react \therefore there is not enough H2 so the amount that reacts is limited by moles H2 \therefore H2 is limiting reagent (and N2 is in excess) \therefore so only 8 moles of N2 can react (and 4 moles of N2 is left over)CHANGES-8 mole-24 moles12-8 =24-24 =0+16 =

0 moles

4 moles

© www.chemsheets.co.uk AS 1028 25-Jun-2016

16 moles

$2 SO_2 + O_2 \longrightarrow 2 SO_3$

START	10 moles	8 moles	
	10 moles of SO ₂ needs 5 moles of O_2 for it all to react		
	\therefore there is more than enough O ₂		
	\therefore SO ₂ is limiting reagent (and O ₂ is in excess)		
	\therefore so only 5 moles of O ₂ can react (and 3 moles of O ₂ is left over)		
CHANGES	-10 mole	–5 moles	+10 moles
END	10–10 =	8–5 =	0+16 =
	0 moles	3 moles	10 moles

IDEAL GAS EQUATION

PV = nRT

- P = Pressure (Pa)
- $V = Volume (m^3)$
- n = number of moles
- R = Gas Constant (8.31 J mol⁻¹ K⁻¹)
- T = Temperature (K)

SOLUTIONS

concentration (mol dm⁻³) = <u>moles</u> volume (dm³)

BACK TITRATIONS

Used to analyse insoluble bases (we have to work backwards).

STEP 2

- remove 25 cm³ by pipette
- titrate excess acid/base against solution of known concentration
- repeat titration to get concordant results

BACK TITRATIONS

Used to analyse insoluble acids/bases (we have to work backwards).

Imagine that we are trying to find out how many moles of $CaCO_3$ we have (let's call it x moles).

We add 10.0 moles of HCI (an excess). The excess HCI is made into a 250 cm³ stock solution and then 25 cm³ portions of it require 0.40 moles of NaOH for neutralisation.

$CaCO_3 + 2 HCI \rightarrow CaCI_2 + H_2O + CO_2$	left over
x 10.0	$HCI + NaOH \rightarrow NaCI + H_2O$
10.0 added – 4.0 left over	0.40 0.40 per titration
= 6.0 reacted with $CaCO_3$	4.0 in whole stock solution
3.0	

.: there are 10 x 0.40 moles (= 4.0 moles) of left over HCI in the stock solution

 \therefore 6.0 moles (10.0 – 4.0 moles) of HCl reacted with the CaCO₃

: there must have been 3.0 moles of $CaCO_3$ (i.e. x = 3.0) in the first place (remember that 2 moles of HCl reacts with 1 mole of $CaCO_3$).

Silicon dioxide (silica)

SiO_2 Ratio of Si:O = 1:2

Sodium chloride (salt)

NaCl Ratio of Na:Cl = 1:1

- All substances have an empirical formula
- It gives the simplest ratio of atoms/ions of each element in a substance
- For most substances it is the ONLY formula (substances made of molecules also have a second formula the molecular formula)

Empirical formula = H_2O Ratio of H:O = 2:1

Water

Molecular formula = H_2O In one molecule: 2H & 1O atoms

Empirical formula = CH Ratio of C:H = 1:1

Benzene

Molecular formula = C_6H_6 In one molecule: 6C & 6H atoms